MATH 1A - FINAL EXAM

PEYAM RYAN TABRIZIAN

Name: \qquad
Instructions: This is it, people! Your final hurdle to freedom :) This exam counts for 30% of your grade and you officially have 110 minutes to take this exam (although I will try to give you more time). Please box your answers.

By the way, enjoy the rest of your \sum mer :)
Note: This is the final exam, NOT the final exam deluxe. Please sign here to acknowledge this fact:

1		20
2		10
3		40
4		20
5		20
6		20
7		10
8		10
Bonus 1		5
Bonus 2		5
Bonus 3		5
Total		150

Date: Friday, August 12th, 2011.

1. (20 points) Use the definition of the integral to evaluate:

$$
\int_{0}^{1}\left(x^{3}-2\right) d x
$$

You may use the following formulas:

$$
\sum_{i=1}^{n} 1=n \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Note: -2 for not writing $\lim _{n \rightarrow \infty}$
(This page is left blank in case you need more space to work on problem 1)
2. (10 points) Evaluate the following limit:

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(e^{\frac{1}{n}}+e^{\frac{2}{n}}+\cdots+e^{\frac{n}{n}}\right)
$$

3. (40 points, 5 points each) Find the following integrals:
(a) $\int_{-1}^{1} \sqrt{1-x^{2}} d x$

Note: Don't spend too much time on this one, either you know it or you don't!
(b) $\int \frac{1}{x^{2}+1} d x$

Note: Ditto!
(c) The antiderivative F of $f(x)=3 e^{x}+4 \sec ^{2}(x)$ which satisfies $F(0)=1$.
(d) $\int_{0}^{1} x^{3}+x^{4} d x$
(e) $g^{\prime}(x)$, where $g(x)=\int_{x^{2}}^{e^{x}} \sin \left(t^{3}\right) d t$
(f) $\int e^{x} \sqrt{e^{x}-1} d x$
(g) $\int_{e}^{e^{2}}\left(\frac{(\ln (x))^{3}}{x}\right) d x$
(h) The average value of $f(x)=\sin \left(x^{5}\right)\left(1+e^{-x^{2}}+x^{2}\right)$ on $[-\pi, \pi]$
4. (20 points) Find the area of the region enclosed by the curves:

$$
y=\cos (x) \quad \text { and } \quad y=-\cos (x) \quad \text { from } 0 \text { to } \pi
$$

Hint: It might help to notice a certain symmetry in your picture!
(This page is left blank in case you need more space to work on question 4.)
5. (20 points, 10 points each) Find the following limits
(a) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+4}}{x}$
(b) $\lim _{x \rightarrow 0^{+}} x^{x^{2}}$
6. (20 points, 10 points each) Find the derivatives of the following functions
(a) $f(x)=(\sin (x))^{x}$
(b) y^{\prime}, where $x^{y}=y^{x}$

Hint: Take lns first, and then differentiate.
7. (10 points) Find the absolute maximum and minimum of the following function on $\left[0, \frac{\pi}{2}\right]$:

$$
f(x)=\sin (x)+\cos (x)
$$

Hint: $\cos (x)=\sin (x)$ when $x=\frac{\pi}{4}$
8. (10 points) Who's your favorite Math 1A teacher of all time???

1A/Practice Exams/Soccer.jpg

Bonus 1 (5 points) Fill in the gaps in the following proof that the function f is not integrable on $[0,1]$:

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } x \text { is rational } \\
1 & \text { if } x \text { is irrational }
\end{array}\right.
$$

Step 1: Pick x_{i}^{*} such that \qquad . Then:
$\int_{0}^{1} f(x) d x=$

Step 2: Pick x_{i}^{*} such that \qquad . Then:
$\int_{0}^{1} f(x) d x=$

Since we get two different answers for the integral, we have a contradiction. $\Rightarrow \Leftarrow$. And hence f is not integrable on $[0,1]$.

Note: See the handout 'Integration sucks!!!' for a nice discussion of this problem!

Bonus 2 (5 points) Another way to define $\ln (x)$ is:

$$
\ln (x)=\int_{1}^{x} \frac{1}{t} d t
$$

Show using this definition only that $\ln \left(e^{x}\right)=x$.
Hint: Let $g(x)=\ln \left(e^{x}\right)=\int_{1}^{e^{x}} \frac{1}{t} d t$.
First differentiate g, then simplify, and then antidifferentiate your answer. Make sure you face the issue of the constant!

Bonus 3 (5 points) Define the Product integral $\prod_{a}^{b} f(x) d x$ as follows:
If we define $\Delta x, x_{i}$, and x_{i}^{*} as usual, then:

$$
\prod_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left(f\left(x_{1}^{*}\right)\right)^{\Delta x}\left(f\left(x_{2}^{*}\right)\right)^{\Delta x} \cdots\left(f\left(x_{n}^{*}\right)\right)^{\Delta x}
$$

That is, instead of summing up the $f\left(x_{i}^{*}\right)$, we multiply them!
Question: Express $\prod_{a}^{b} f(x) d x$ in terms of $\int_{a}^{b} f(x) d x$

Hint: How do you turn a product into a sum?
Note: In other words, although this looks like a new concept, it really isn't, which is quite surprising!
(Scrap work)

Any comments about this exam? (too long? too hard?)

CONGRATULATIONS!!!

You're officially done with this course! :) Thank you so much for having me, and I hope you had a lot of fun! :)
$\underline{\text { Any other comments or goodbye words? }}$

