MATH 1A - FINAL EXAM

PEYAM RYAN TABRIZIAN

Name:

Instructions: This is it, people! Your final hurdle to freedom :) This exam counts for 30% of your grade and you officially have 110 minutes to take this exam (although I will try to give you more time). Please box your answers.

By the way, enjoy the rest of your \sum mer :)

Note: This is the final exam, **NOT** the final exam deluxe. Please sign here to acknowledge this fact: ______.

1	20
2	10
3	40
4	20
5	20
6	20
7	10
8	10
Bonus 1	5
Bonus 2	5
Bonus 3	5
Total	150

Date: Friday, August 12th, 2011.

1. (20 points) Use the **definition** of the integral to evaluate:

$$\int_0^1 \left(x^3 - 2\right) dx$$

You may use the following formulas:

$$\sum_{i=1}^{n} 1 = n \qquad \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

Note: -2 for not writing $\lim_{n\to\infty}$

(This page is left blank in case you need more space to work on problem 1)

2. (10 points) Evaluate the following limit:

$$\lim_{n \to \infty} \frac{1}{n} \left(e^{\frac{1}{n}} + e^{\frac{2}{n}} + \dots + e^{\frac{n}{n}} \right)$$

3. (40 points, 5 points each) Find the following integrals:

(a)
$$\int_{-1}^{1} \sqrt{1 - x^2} dx$$

Note: Don't spend too much time on this one, either you know it or you don't!

(b)
$$\int \frac{1}{x^2+1} dx$$

Note: Ditto!

(c) The antiderivative F of $f(x) = 3e^x + 4\sec^2(x)$ which satisfies F(0) = 1.

(d)
$$\int_0^1 x^3 + x^4 dx$$

(e)
$$g'(x)$$
, where $g(x) = \int_{x^2}^{e^x} \sin(t^3) dt$

(f)
$$\int e^x \sqrt{e^x - 1} dx$$

(g)
$$\int_{e}^{e^2} \left(\frac{(\ln(x))^3}{x}\right) dx$$

(h) The average value of
$$f(x) = \sin(x^5)(1 + e^{-x^2} + x^2)$$
 on $[-\pi, \pi]$

4. (20 points) Find the area of the region enclosed by the curves:

 $y = \cos(x)$ and $y = -\cos(x)$ from 0 to π

Hint: It might help to notice a certain symmetry in your picture!

PEYAM RYAN TABRIZIAN

(This page is left blank in case you need more space to work on question 4.)

(a) $\lim_{x\to-\infty}\frac{\sqrt{x^2+4}}{x}$

(b) $\lim_{x \to 0^+} x^{x^2}$

6. (20 points, 10 points each) Find the derivatives of the following functions

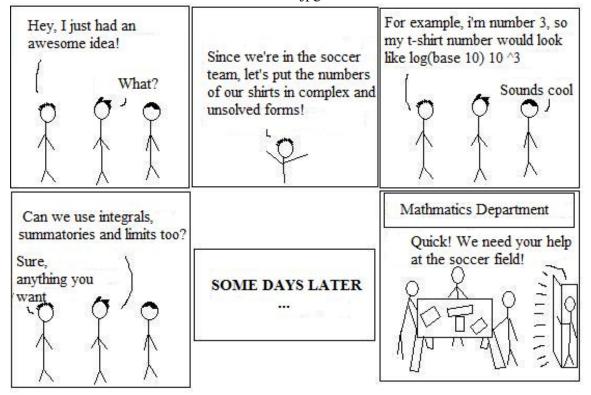
(a)
$$f(x) = (\sin(x))^x$$

(b) y', where $x^y = y^x$

Hint: Take lns first, and then differentiate.

7. (10 points) Find the absolute maximum and minimum of the following function on $[0, \frac{\pi}{2}]$:

$$f(x) = \sin(x) + \cos(x)$$


Hint: $\cos(x) = \sin(x)$ when $x = \frac{\pi}{4}$

PEYAM RYAN TABRIZIAN

8. (10 points) Who's your favorite Math 1A teacher of all time???

MATH 1A - FINAL EXAM

1A/Practice Exams/Soccer.jpg

Bonus 1 (5 points) Fill in the gaps in the following proof that the function f is not integrable on [0, 1]:

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$$

Step 1: Pick x_i^* such that _____. Then:

 $\int_0^1 f(x)dx =$

Step 2: Pick x_i^* such that _____. Then:

 $\int_0^1 f(x)dx =$

Since we get two different answers for the integral, we have a contradiction. $\Rightarrow \Leftarrow$. And hence f is not integrable on [0, 1].

Note: See the handout 'Integration sucks!!!' for a nice discussion of this problem!

Bonus 2 (5 points) Another way to define $\ln(x)$ is:

$$\ln(x) = \int_1^x \frac{1}{t} dt$$

Show using this definition only that $\ln(e^x) = x$.

Hint: Let
$$g(x) = \ln(e^x) = \int_1^{e^x} \frac{1}{t} dt$$
.

First differentiate g, then simplify, and then antidifferentiate your answer. Make sure you face the issue of the constant!

Bonus 3 (5 points) Define the **Product integral** $\prod_{a}^{b} f(x) dx$ as follows:

If we define Δx , x_i , and x_i^* as usual, then:

$$\prod_{a}^{b} f(x)dx = \lim_{n \to \infty} \left(f(x_1^*) \right)^{\Delta x} \left(f(x_2^*) \right)^{\Delta x} \cdots \left(f(x_n^*) \right)^{\Delta x}$$

That is, instead of summing up the $f(x_i^*)$, we *multiply* them!

Question: Express
$$\prod_{a}^{b} f(x) dx$$
 in terms of $\int_{a}^{b} f(x) dx$

Hint: How do you turn a product into a sum?

Note: In other words, although this *looks* like a new concept, it really isn't, which is quite surprising!

(Scrap work)

Any comments about this exam? (too long? too hard?)

CONGRATULATIONS!!!

You're officially done with this course! :) Thank you so much for having me, and I hope you had a lot of fun! :)

Any other comments or goodbye words?